Skip to main content

Quickstart

Welcome to the GLiClass Framework Quickstart Guide! This document will help you get started with the basics of using GLiClass.

Installation

To install GLiClass, run the following command:

pip install gliclass

Basic Usage

Here is a simple example to get started:

import torch
from gliclass import GLiClassModel, ZeroShotClassificationPipeline
from transformers import AutoTokenizer
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model = GLiClassModel.from_pretrained("knowledgator/gliclass-small-v1.0")
tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-small-v1.0")

pipeline = ZeroShotClassificationPipeline(
model, tokenizer, classification_type='multi-label', device=device
)

text = "One day I will see the world!"
labels = ["travel", "dreams", "sport", "science", "politics"]
results = pipeline(text, labels, threshold=0.5)[0]

for result in results:
print(f"{result['label']} => {result['score']:.3f}")
Expected Output
travel => 1.000  
dreams => 1.000
sport => 1.000
science => 1.000
politics => 0.817

Next Steps

  • Check out the Examples for more use cases.

Happy coding!